当前位置 : 首页 > 新闻动态 > 团队动态

团队动态

王金亮导师团队学术论文在SCIE期刊Geocarto International 上线发表

日期:2022-09-23 点击量: 1753

王金亮导师团队学术论文在SCIE期刊Geocarto International 上线发表

2022922日,以何苏玲(云南师范大学地理学部地图学与地理信息系统专业2020级硕士研究生)为第一作者,王金亮教授为通讯作者所撰写的题为“Evaluation and analysis of upscaling of different Land Use/Land Cover products (FORM-GLC30, GLC_FCS30, CCI_LC, MCD12Q1 and CNLUCC): a case study in China”的学术论文在SCI/SCIE期刊Geocarto International(202112月基础版二区,升级版三区,2021IF 4.889)上线发表(https://doi.org/10.1080/10106049.2022.2127926)。

目前存在着丰富的全球土地利用/土地覆盖(LULC)产品,如DISCoverFORM-GLC30CCI_LCMCD12Q1等,这些产品在地球生物化学循环和气候变化模拟研究中发挥着极其重要的作用。然而,它们在空间和时间尺度上有所不同,难以进行空间匹配。本文以中国大陆地区为例,探究五种LULC产品(FORM-GLC30GLC_FCS30CCI_LCMCD12Q1CNLUC)在不同的升尺度方法(格点中心、面积最大、最大聚合和最近邻)与不同分辨率下(1km-8km)的升尺度效果。研究表明:最近邻法的升尺度效果优于其他三种方法;FORM-GLC30GLC_FCS30CCI_LCMCD12Q1CNLUCC最适合的升级规模分别为2km2km~6km2km ~5km2cm3km~5kmCNLUCC数据集由于其时间跨度长、数据精度高,并且在升尺度时精度相对较高,因此最适合中国地区进行相关的长期时间序列研究。研究为实现不同LULC产品之间的空间匹配,完成LULC产品与其他地理要素产品的有效集成提供了一定依据。

该论文得到了王金亮教授主持的国家重点研发计划政府间国际科技创新合作重点专项:利用地理空间技术监测和评估土地利用/土地覆被变化对区域生态安全的影响(2018YFE0184300)和云南省高校高原山地资源环境遥感监测与评估科技创新团队(IRTSTYN)的资助。

这是何苏玲同学读硕士研究生以来发表的首篇 SCI/SCIE 学术论文,也是她的硕士期间发表的第三篇学术论文(详见录1)、王金亮教授导师团队 2022 年的发表第10 SCI/SCIE 论文(详见录 2),让我们恭喜何苏玲同学!希望她再接再厉!也热烈祝贺团队取好成绩!

image.png

Figure 1. A map of China. (a) Desert, (b) Deciduous broadleaf forest, (c) Glaciers, (d) Water bodies, (e) Grasslands, (f) Construction land, (g) Wetlands, (h) Cultivated land.

image.png

Figure 2. Distribution of LULC types across China in 2015 according to five LULC products. (a) FROM_GLC30, (b) GLC_FCS30, (c) CCI_LC, (d) MCD12Q1, (e) CNLUCC.

image.png


Figure 3. The ACI was obtained after upscaling of five LULC products for China in 2015 under different scaling methods and scales. (a) FROM_GLC30, (b) GLC_FCS30, (c) CCI_LC, (d) MCD12Q1, (e) CNLUCC.

image.png

Figure 4. Results of upscaling the CNLUCC product for China for 2015 under the nearest neighbor method and different scales. (a) 1 km, (b) 3 km, (c) 5 km, (d) 7 km, (e) 8 km.

论文相关信息

标题:Evaluation and analysis of upscaling of different Land Use /Land Cover products (FORM-GLC30, GLC_FCS30, CCI_LC, MCD12Q1 and CNLUCC): a case study in China

 

作者:Suling He a,b,c, Jie Lia,b,c, Jinliang Wanga,b,c*, and Fang Liua,b,c

通讯作者:Jinliang Wang

作者单位:

a Faculty of Geography, Yunnan Normal University, Kunming, China;

b Key Laboratory of Resources and Environmental Remote Sensing for Universities in Yunnan, Kunming, China;

c Center for Geospatial Information Engineering and Technology of Yunnan Province, Kunming, China;

出版物:Geocarto International

 

摘要: A rich of global land use/land cover (LULC) products exist, such as DISCover, FORM-GLC30, CCI_LC, MCD12Q1, etc. These products play an extremely important role in the study of the earth's biochemical cycles and climate change simulations. However, these LULC products vary in spatial and temporal scale. Scale conversion is one of the effective means to solve this difference, which can realize the spatial matching between different LULC products and complete the effective integration of LULC products with other geographic element products. Due to data acquisition limitations, this study adopted China as a case study for examining the accuracy of upscaling of five LULC products, FORM-GLC30, GLC_FCS30, CCI_LC, MCD12Q1, and CNLUC. The original resolution of FORM-GLC30 and GLC_FCS30 is 30 m, and that of CCI_LC, MCD12Q1, and CNLUCC is 300 m, 500 m, and 1 km, respectively. There are four different upscaling methods of grid center, maximum area, maximum aggregation, and nearest neighbor to amplify the resolution to 1 ~ 8 km.  Within the upscaling experiment, using area change index and shannon index to assess accuracy of LULC Product upscaling. The results showed that: (1) the rank of the upscaling methods according to upscaling accuracy was: nearest neighbor > grid center > maximum area > maximum aggregation. (2) The most suitable scales for upscaling of FORM-GLC30, GLC_FCS30, CCI_LC, MCD12Q1, and CNLUCC are 2 km, 2 km~6 km, 2 km~5 km, 2 km, and 3 km~5 km, respectively. (3) The CNLUCC dataset in China was shown to be suitable for conducting relevant long-term time-series research due to its long time span, high data accuracy, and relatively higher accuracy when upscaled.

 

关键词: LULC products; Upscaling; Area change index; Shannon index; China

 

附录 1 何苏玲同学硕士期间发表 SCI 论文清单

20209月攻读硕士至今,何苏玲在王金亮教授指导下共发表了1SCI学术论文、2CSCD论文,具体信息如下:

[3] Suling He, Jie Li, Jinliang Wang*, and Fang Liu. Evaluation and analysis of upscaling of different Land Use /Land Cover products (FORM-GLC30, GLC_FCS30, CCI_LC, MCD12Q1 and CNLUCC): a case study in China[J]. Geocarto International, 2022, Online.

DOI: https://doi.org/10.1080/10106049.2022.2127926.(202112月基础版二区,升级版三区,2021IF 4.889)

[2] 何苏玲,邹凤琼,王金亮*.基于AHPMSE赋权法的龙南县生态敏感性评价[J].生态学杂志,2021,40(09):2927-2935.

DOI:10.13292/j.1000-4890.202109.022. CSCD, 核心库)

[1]何苏玲,王金亮*,角媛梅,周京春,农兰萍,朱泓.国土空间规划视角下资源环境承载力评价分析——以昆明市为例[J], 中国农业资源与区划, 2021,43(4):119-128 

DOI: 10. 7621/cjarrp. 1005-9121. 20220413 CSCD, 核心库)

 

附录2 王金亮团队2221月至今发表论文清单

20221月至今,王金亮教授团队,发表学术论文12篇,其中10SCI/SCIE论文、2CSCD论文,具体信息如下:

[12] Suling He, Jie Li, Jinliang Wang*, and Fang Liu. Evaluation and analysis of upscaling of different Land Use /Land Cover products (FORM-GLC30, GLC_FCS30, CCI_LC, MCD12Q1 and CNLUCC): a case study in China[J]. Geocarto International,2022, Online.

DOI:https://doi.org/10.1080/10106049.2022.2127926.  (202112月基础版二区,升级版2021IF 4.889)

[11]Juncheng Shi, Cheng Wang, Jinliang Wang*, Xiaohuan Xi*, Xuebo Yang, and Xue Ding*. Study on the LAI and FPAR inversion of maize from airborne LiDAR and hyperspectral data[J] INTERNATIONAL JOURNAL OF REMOTE SENSING 2022, VOL. 43, NO. 13, 4793-4809

https://doi.org/10.1080/01431161.2022.2121187  (中科院SCI期刊分区202112月最新基础版三区,升级版三区;2021IF 3.531

[10] Chen Y, Wang J*, Kurbanov E, Thomas A, Sha J, Jiao Y, et al. Ecological security assessment at different spatial scales in central Yunnan Province, China[J]. PLoS ONE, 2022, 17(6): e0270267.

DOI: https://doi.org/10.1371/journal.pone.0270267. (中科院 SCI 期刊分区:2021 12 月基础版三区,升级版三区;2022 年最新 IF 3.752)

 [9] Jiya Pan, Jinliang Wang*, Fan Gao, and Guangjie Liu. Quantitative estimation and influencing factors of ecosystem soil conservation in Shangri-La, China[J]. Geocarto International, 2022.

DOI: https://doi.org/10.1080/10106049.2022.2091160. (中科院 SCI 期刊分区: 2021 12 月基础版二区,升级版三区;2021 IF 4.889)

[8] Jianpeng Zhang, Jinliang Wang*, Feng Cheng, Weifeng Ma, Qianwei Liu, Guangjie Liu. Natural forest ALS-TLS point cloud data registration without control points[J]. Journal of Forestry Research, 2022, Online.

 DOIhttps://doi.org/10.1007/s11676-022-01499-w.(中科院 SCI 期刊分区:2021 12 月基础版 SCIE 二区,升级版 SCIE 二区;2021 IF 2.149

[7] PAN, J. Y. ,WANG, J. L.* , LIU, G. J. ,GAO, F.Estimation of ecological asset values in Shangri_la based on remotely sensed data [J]. Applied ecology and environmental research, 2022, 20(4):2879-2895.

DOI: http://dx.doi.org/10.15666/aeer/2004_28792895. (中科院 SCI 期刊分区: 2021 12 月基础版 SCIE 四区,升级版 SCIE 四区;2020-2021 最新 IF: 0.711)

[6]Jie Li, Suling He, Jinliang Wang*, Weifeng Ma, Hui Ye. Investigating the spatiotemporal changes and driving factors of nighttime light patterns in RCEP Countries based on remote sensed satellite images [J]. Journal of Cleaner Production, 2022, 131944.

DOI: https://doi.org/10.1016 /j.jclepro.2022.131944. (中科院 SCI 期刊分区:2021 12 月基础版 SCIE 一区,升级版 SCIE 一区;Top:是;2020-2021 最新 IF: 9.297)

 [5]潘继亚, 王金亮*, 高帆. 滇西北高山峡谷典型区土地利用变化与生态安全评价 研究[J]. 生态科学, 2022, 41(2): 29–40. (北大核心, CSCD 扩展库)

[4] Jie Li, Jinliang Wang*, Jun Zhang, Chenli Liu, Suling He, Lanfang Liu. Growing-season vegetation coverage patterns and driving factors in the China-Myanmar Economic Corridor based on Google Earth Engine and geographic detector [J]. Ecological Indicators, 2022, 136, 108620.

 DOI: https://doi.org/10.1016/j.ecolind.2022.108620. (中科院 SCI 期刊分区:2021 12 月基础版 SCIE 二区,升级版 SCIE 二区;2022 最新 IF: 6.263)

[3]农兰萍,王金亮*,玉院和.基于地理加权回归模型和不同植被特征参数的 TRMM 3B43 降尺度研究——以云南省为例[J].兰州大学学报(自然科学版), 2022, 58(01): 99-110+117.

DOI:10.13885/j.issn.0455-2059.2022.01.011. ( CSCD 核心库)

[2] Jianpeng Zhang, Jinliang Wang*, Pinliang Dong, Weifeng Ma, Yicheng Liu, Qianwei Liu, Zhiyan Zhang. Tree stem extraction from TLS point-cloud data of natural forests based on geometric features and DBSCAN[J]. Geocarto International, Published online: 08 Feb 2022.

DOI: 10.1080/10106049.2022.2034988 (中科院 SCI 期刊分区:2021 12 月基 础版 SCIE 二区,升级版 SCIE 三区;2021 IF 4.889)

[1] Yuanhe Yu, Xingqi Sun, Jinliang Wang*, Jianpeng Zhang. Using InVEST to evaluate water yield services in Shangri-La, Northwestern Yunnan, China[J]. Peer J 10: e12804, 2022

 https://doi.org/10.7717/peerj.12804 (中科院 SCI 期刊分区:2021 12 月基 础版 SCIE 三区,升级版 SCIE 三区;2020-2021 IF: 2.984)

 

 

(供稿:云南省高校资源与环境遥感重点实验室)