王金亮教授团队学术论文在SCIE四区期刊Polish Journal of Environmental Studies上线发表
2023年12月6日,以丁雪(云南师范大学地理学部地图学与地理信息系统专业2018级博士研究生)为第一作者,王金亮教授为通讯作者所撰写的题为“Research on the Spatial-Temporal Pattern Evolution and Driving Force of EcologicalEnvironment Quality in Kunming City Based on Remote Sensing Ecological Environment Index in the Past 25 Years”的学术论文在SCI/SCIE四区期刊《Polish Journal of Environmental Studies》上线发表(https://doi.org/10.15244/pjoes/173102).
昆明市是云南省的省会城市,是面向南亚、东南亚的桥头堡城市,随着经济社会的高速发展,城市化率不断提高,该区域的生态环境质量也在发生变化,如何快速、准确的获取昆明市生态环境质量的时空格局演变并探究驱动因素,对实现昆明市生态环境保护和可持续发展具有十分重要的意义。利用Google Earth Engine(GEE)平台,采用长时序Landsat遥感影像数据,掩膜水体后,提取绿度、干度、湿度和热度,通过PCA构建遥感生态指数RSEI,运用冷热点分析、重心迁移等空间分析方法探究2000-2019年昆明市生态环境质量时空格局演变规律,采用地理探测器中的单因子分析和交互探测分析其内在驱动力。结果表明:(1)1995-2019年昆明市生态环境质量呈现出先增长-再下降-后增长的趋势,25年来整体生态环境质量处于一般的状态,但生态环境状况持续变好。(2)生态环境质量等级面积为:生态环境中等面积>生态环境良好面积>生态环境较差面积>生态环境差面积>生态环境优秀面积,从空间分布上来看,生态环境质量呈现西南部高-东北部差的空间分布格局。(3)1995-2019年生态环境标准差椭圆中心相距较近,长轴均呈现南—北方向,椭圆较椭,方向性比较明显,重心基本较为稳定变化幅度较小。(4)石漠化区域、水土流失区域、人口集中和城市扩张较快的区域生态环境质量较差,生态环境较好的区域则大多植被覆盖率较高。人口和坡度分别是主导昆明市生态环境空间分布的人类活动因子和自然因子,坡度、人口和GDP三者与其他因子共同作用对昆明市生态环境质量的影响显著。(5)未来昆明市应该严格保护生态环境质量重点区域,同时加强生态保护修复,优化国土空间开发,持续改善生态环境质量,实现生态环境建设与经济同步可持续发展。
Fig. 1. Location of the Study Area.
Fig. 2. Mean RSEI values and normalized component maps for Kunming City from 1995 to 2019.
Fig. 3. Ecological Environment Grade Distribution Map of Kunming City.
Fig. 4. Ecological Environment Quality Distribution Map of Kunming City
Fig. 5. Ecological Environment Change Map of Kunming City.
Fig. 6. Ecological Environment Hotspot and ColdspotAnalysis Distribution Map of Kunming City.
Fig. 7. Ecological Environment Quality Standard Deviation Ellipse and Spatial Shift Trajectory of EcologicalEnvironment Quality Distribution Map in Kunming City.
Fig. 8. The impact of various factors on the changes in ecological and environmental quality in Kunming City.
Fig. 9. The interaction among various factors affecting the ecological and environmental quality in Kunming City.
该论文得到了王金亮教授主持的国家重点研发计划政府间国际科技创新合作重点专项:地理空间技术监测和评估土地利用/土地覆被变化对区域生态安全的影响(2018YFE0184300)、云南省高校高原山地资源环境遥感监测与评估科技创新团队 (IRTSTYN)、和云南省教育厅基金 (2022J0139)以及云南师范大学博士研究生科研创新基金(项目号:YJSJJ21-A08)的共同资助。
这是丁雪同学博士期间以第一作者发表的第3篇论文,第一篇SCIE学术论文(详见录 1,2),也是王金亮教授导师团队 2023年发表的第10篇 SCI/SCIE 论文(详见录 3),让我们恭喜丁雪同学!希望他再接再厉!也热烈祝贺团队取好成绩!
附录 1 论文相关信息
标题:Research on the Spatial-Temporal Pattern Evolution and Driving Force of Ecological Environment Quality in Kunming City Based on Remote Sensing Ecological Environment Index in the Past 25 Years
作者:Xue Ding1, 2, 3, 4, Xin Shao1, 2, 3, Jinliang Wang1, 2, 3*, Shuangyun Peng1, Juncheng Shi1, 2, 3
通讯作者:Jinliang Wang
作者单位:
1 Faculty of Geography, Yunnan Normal University, Kunming, Yunnan, China
2 Key Laboratory of Resources and Environmental Remote Sensing for Universities in Yunnan, Kunming 650500, Yunnan, China
3 Center for Geospatial Information Engineering and Technology of Yunnan Province, Kunming, Yunnan, China
4 School of Information Science and Technology, Yunnan Normal University, Kunming, Yunnan, China, 650500
* Corresponding author:
E-mail: jlwang@ynnu.edu.cn (JW)
出版物: Polish Journal of Environmental Studies
摘要:Kunming is the capital city of Yunnan Province and a bridgehead city facing South Asia and Southeast Asia. With the rapid development of Kunming‘s economy and society, the urbanization rate continues to increase, and the quality of the ecological environment in this area is also changing rapidly. How to quickly and accurately obtain the temporal and spatial pattern evolution of Kunming‘s ecological environment quality and explore the driving factors is of great signifcance to the realization of ecological environmental protection and sustainable development of Kunming. In this paper, the Google Earth Engine (GEE) platform is used to use the long-term Landsat remote sensing image data to mask the water body, extract greenness, dryness, humidity and heat, and construct the remote sensing ecological index RSEI through PCA. Using spatial analysis methods such as cold and hot spot analysis and center of gravity migration to explore the evolution of the spatio-temporal pattern of ecological environment quality in Kunming from 2000 to 2019, and use single-factor analysis and interactive detection in geographic detectors to analyze its internal driving forces. The results show, (1) From 1995 to 2019, the quality of the ecological environment in Kunming showed a trend of frst increasing-then decreasing-then increasing. The overall ecological environment quality was in a general state in the past 25 years, but the ecological environment continued to improve. (2) In the past 25 years, the ecological environment quality grade area of Kunming City is, medium ecological environment area > good ecological environment area > poor ecological environment area > poor ecological
environment area > excellent ecological environment area. From the perspective of spatial distribution, the ecological environment quality presents The spatial distribution pattern of high in the southwest and poor in the northeast. (3) From 1995 to 2019, the centers of the standard deviation ellipse of Kunming‘s ecological environment were relatively close to each other, and the major axes all showed a south-north direction. (4) In Kunming, the ecological environment quality is poor in areas with concentrated rocky desertifcation, concentrated water and soil erosion, concentrated population and rapid urban expansion, while areas with better ecological environment mostly have higher vegetation coverage. Population and slope are the human activity factors and natural factors that dominate the spatial distribution of
ecological environment in Kunming, respectively. Slope, population and GDP, together with other factors, have a signifcant impact on the quality of ecological environment in Kunming. (5) In the future, Kunming City should rigorously prioritize the protection of key ecological areas, enhance ecological conservation and restoration efforts, optimize land use and development, continuously enhance the quality of the ecological environment, and achieve synchronous and sustainable development of the ecological environment and the economy.
关键字:landsat, remote sensing, geographic detector, driving force analysis
附录2 丁雪同学发表论文清单
自 2018 年 9 月攻读博士至今,丁雪同学在王金亮教授指导下发表了 3 篇论文,第一篇 SCI 学术论文,信息如下:
[1] 丁雪,王金亮*,施骏骋等.2000—2020年滇中城市群生态环境质量动态监测及空间格局演变,2023,43(03):96-104+128.(CSCD)
DOI:10.13961/j.cnki.stbctb.2023.03.013
[2] 丁雪,王金亮*,施骏骋等2000-2020年滇中城市群不透水面时空动态演变及驱动力分析[J].水土保持研究,2024,4期(CSCD),录用。
[3] Ding X, Shao X, Wang J*, Peng S, Shi J. Research on the Spatial-Temporal Pattern Evolution and Driving Force of Ecological Environment Quality in Kunming City Based on Remote Sensing Ecological Environment Index in the Past 25 Years. Polish Journal of Environmental Studies. 2023. doi:10.15244/pjoes/173102.
(中科院 SCI 期刊分区:2023年12月四区,2023年最新IF:1.7)
附录 3 王金亮教授团队 2023 年发表论文清单
自2023年01月01日至12月1日,王金亮教授导师团队发表学术论文14篇,其中SCIE论文9篇,CSCD4篇,普刊1篇。具体信息如下:
[14] Ding X, Shao X, Wang J*, Peng S, Shi J. Research on the Spatial-Temporal Pattern Evolution and Driving Force of Ecological Environment Quality in Kunming City Based on Remote Sensing Ecological Environment Index in the Past 25 Years. Polish Journal of Environmental Studies. 2023. doi:10.15244/pjoes/173102.
[13]丁雪,王金亮等.2000—2020年滇中城市群生态环境质量动态监测及空间格局演变[J].水土保持通报,2023,43(03):96-104+128.(CSCD)DOI:10.13961/j.cnki.stbctb.2023.03.013
[12] Yongcui Lan, Jinliang Wang*, Qianwei Liu, Fang Liu, Lanfang Liu, Jie Li, Mengjia Luo. Identification of critical ecological restoration and early warning regions in the five-lakes basin of central Yunnan[J]. Ecological Indicators,2023.DOI: https://doi.org/10.1016/j.ecolind.2023.111337. (中科院 SCI 期刊分区:2021 年 12 月最新基础版二区,升级版二区,2023年最新IF:6.9)
[11] Luo M, Wang J, Li J, Sha J, He S, Liu L, et al. (2023) The response of ecological security to land use change in east and west subtropical China. PLoS ONE 18(11): e0294462. https://doi.org/10.1371/journal.pone.0294462(2021年12月基础版三区,2022年12月最新升级版三区,2023年最新IF:3.7)
[10]Sikai Wang, Suling He, Jinliang Wang *, Jie Li, Xuzhen Zhong, Janine Cole, Eldar Kurbanov, Jinming Sha. Analysis of Land Use/Cover Changes and Driving Forces in a Typical Subtropical Region of South Africa[J], Remote Sensing. 2023,15(19): 4823. https://doi.org/10.3390/rs15194823 (2021年12月基础版二区,2022年12月最新升级版二区,2023年最新IF:5.349)
[9] Hong Zhu, Feng Cheng, Jinliang Wang*, Yuanmei Jiao, Jingchun Zhou, Jinming Sha, Fang Liu, and Lanping Nong. Variation in the Ecological Carrying Capacity and Its Driving Factors of the Five Lake Basins in Central Yunnan Plateau, China[J]. Sustainability 2023, 15, 14442. https://doi.org/10.3390/su151914442(中科院SCI期刊分区:2021年12月基础版三区,2022年12月最新升级版三区,2023年最新IF3.889)
[8] 邵大江,叶辉,王金亮*,周京春,角媛,沙晋明. 基于机器学习均值化的地质灾害易发性评价[J]. 云南大学学报(自然科学版), 2023, 45(3): 653-665. DOI:10.7540/j.ynu.20220109. (CSCD核心库)
[7] Jie Li, Hui Wang, Jinliang Wang*, Jianpeng Zhang, Yongcui Lan, Yuncheng Deng. Combining Multi-Source Data and Feature Optimization for Plastic-Covered Greenhouse Extraction and Mapping Using the Google Earth Engine: A Case in Central Yunnan Province, China [J]. Remote Sensing, 2023, 15, 3287. DOI: https:// doi.org/10.3390/rs15133287. (中科院SCI期刊分区:2021年12月基础版二区,2022年12月最新升级版二区Top,2023年最新IF5.349)
[6]张建鹏;王金亮*;刘广杰;麻卫峰;刘钱威;邓云程. 基于地基雷达点云主方向的林下植被自动滤除[J], 遥感技术与应用, 2023,38(2):405-412. DOI:10.11873/j.issn.1004-0323.2023.2.0405 (CSCD核心库)
[5]何苏玲,贺增红,潘继亚,王金亮*.基于多模型的县域土地利用/土地覆盖模拟[J/OL].自然资源遥感. 2023-04-03网络首发. https://kns.cnki.net/kcms/detail/10.1759.P. 20230331.1810.004.html (CSCD核心库)
[4]成钊,王金亮*,何苏玲,祁兰兰. 基于多源数据的滇中地区生态韧性度研究[J]. 云南地理环境研究, 2023, 35(02):7-16
[3] Jianpeng Zhang, Jinliang Wang*, Weifeng Ma, Yuncheng Deng, Jiya Pan, Jie Li. Vegetation Extraction from Airborne Laser Scanning Data of Urban Plots Based on Point Cloud Neighborhood Features [J]. Forests, 2023, 14(4), 691. DOI: https://doi.org/10.3390/f14040691. (中科院SCI期刊分区:2021年12月基础版三区, 2022年12月最新升级版二区,2022年IF 3.282)
[2] Jun Ma, Jianpeng Zhang, Jinliang Wang *, Vadim Khromykh, Jie Li, Xuzheng Zhong. Global Leaf Area Index Research over the Past 75 Years: A Comprehensive Review and Bibliometric Analysis [J]. Sustainability, 2023. DOI:<span style="font-size:14px;line-height:150%;font-family:'Times New Roman
地址:云南省昆明市呈贡区云南师范大学旅游与地理科学学院413    
邮箱:ynnurs@163.com   电话:0871-65941202 技术支持:蓝队云
版权所有:Copyright © 2016-2018 云南省高校资源与环境遥感重点实验室. All Rights Reserved