当前位置 : 首页 > 新闻动态 > 团队动态

团队动态

王金亮导师团队学术论文在SCI/SCIE期刊IEEE Geoscience and Remote Sensing Letters上线发表

日期:2022-09-29 点击量: 1492

王金亮导师团队学术论文在SCI/SCIE期刊IEEE Geoscience and Remote Sensing Letters上线发表


2022年9月26日,以潘继亚(云南师范大学地理学部地图学与地理信息系统专业2019级博士研究生)为第一作者,王成研究员为第二作者,王金亮教授为通讯作者所撰写的题为“Land Cover Classification Using ICESat-2 Photon Counting Data and Landsat 8 OLI Data: A Case Study in Yunnan Province, China”的学术论文在SCI/SCIE期刊IEEE Geoscience and Remote Sensing Letters (2021年12月基础版三区,升级版二区,2021年IF 5.343 )上线发表(https://doi.org/10.1109/LGRS.2022.3209725)。

为了更高效地开展土地利用分类,以便实现土地资源的有效管理和可持续利用,联合新一代星载激光雷达卫星ICESat-2的光子点云特征和Landsat 8 OLI影像的光谱特征,采用随机森林算法对云南省地表覆盖进行分类研究。实验结果表明:(1)联合ICESat-2和Landsat 8影像数据的地表覆盖分类精度高于单独使用单一数据的分类精度;(2)通过重要性、相关性和共线性诊断对ICESat-2数据提取的32个特征和Landsat 8影像数据提取的12个特征进行筛选后,分类精度得到一定提高;(3)地表覆被类别越多,分类精度越低,森林、低植被、水体、建设用地和裸地五类地表总体分类精度最高达到82%,植被、水体、建设用地、裸地四类地表总体分类精度最高达到95%;(4)在ICESat-2数据的32个特征参数中,最重要的是dem_init、n_toc_verti、solar_azi、sd_ratio和terrain_slope,可见,对于云南省这种地势较复杂的区域,地形因素、冠层光子数量和太阳条件对地表分类影响较大。

该论文得到了王金亮教授主持的国家重点研发计划政府间国际科技创新合作重点专项(用地理空间技术监测和评估土地利用/土地覆被变化对区域生态安全的影响(立项编号:2018YFE0184300))、国家自然基金项目(联合ULS与TLS点云数据的滇西北天然林单木生物量估算研究(No.:41961060.))、云南省高校创新团队(云南省高校高原山地资源环境遥感监测与评估科技创新团队, IRTSTYN)、云南师范大学研究生科研创新基金项目(编号:ysdyjs2020060和YJSJJ21-A08)和Yunnan applied basic research program(grant number: 202001AU070060)的支持(论文详细信息,见附录1)。

这是潘继亚同学攻读博士研究生以来发表的第3篇 SCI/SCIE 学术论文,也是她博士期间发表的第4篇学术论文(详见附录2)、王金亮教授导师团队 2022 年发表的第11篇 SCI/SCIE 论文(详见附录3),让我们恭喜潘继亚同学!希望她再接再厉!也热烈祝贺团队取好成绩!

附录1 论文相关信息

标题:Land Cover Classification Using ICESat-2 Photon Counting Data and Landsat 8 OLI Data: A Case Study in Yunnan Province, China

作者:Jiya Pan a,b,c, Cheng Wangd, Jinliang Wang a,b,c,*, Fan Gaoe, Qianwei Liu a,b,c, Jianpeng Zhang a,b,c, and Yuncheng Deng a,b,c

通讯作者:Jinliang Wang

作者单位:

a Faculty of Geography, Yunnan Normal University, Kunming 650500, China;

b Key Laboratory of Resources and Environmental Remote Sensing for Universities in Yunnan, Kunming 650500, China;

c Center for Geospatial Information Engineering and Technology of Yunnan Province, Kunming 650500, China;

d Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China;

e Yunnan Minzu University, Kunming 650500, China;

出版物:IEEE Geoscience and Remote Sensing Letters

摘要:Land cover classification is important for effectively protecting and developing land resources. This study investigates the joint use of the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) data and Landsat 8 Operational Land Imager (OLI) data in land cover classification with random forest (RF) in Yunnan province, China, to explore the application potential of photon counting Lidar data in land cover classification. The contributions of this paper are: (1) The joint use of ICESat-2 and Landsat 8 image datasets can provide better land cover classification accuracy, achieving 10% and 3% accuracy gains for five types(forest/low-vegetation/water/construction land/barren) and four types (vegetation/water/construction-land/barren)of land cover, respectively. (2) The proposed feature selection improves the overall accuracy by 1.5% and 1% for five and four land cover types, respectively. (3) The accuracy of the land cover classification reached 82% and 98% for five and four types of land cover. (4) The terrain factors, the number of canopy photons, and solar conditions significantly impact land cover classification for a complex terrain area.

关键字:land cover classification; ICESat-2; Landsat 8; random forest; feature selection

 

附录2 潘继亚同学博士期间发表SCI论文清单

自2019年9月攻读博士至今,潘继亚在王金亮教授指导下共发表了学术论文4篇,其中3篇 SCI/SCIE 论文、1篇CSCD 论文,信息如下:

[4] Jiya Pan a,b,c, Cheng Wangd, Jinliang Wang a,b,c,*, Fan Gaoe, Qianwei Liu a,b,c, Jianpeng Zhang a,b,c, and Yuncheng Deng a,b,c. Land Cover Classification Using ICESat-2 Photon Counting Data and Landsat 8 OLI Data: A Case Study in Yunnan Province, China[J]. IEEE Geoscience and Remote Sensing Letters, 2022.

DOI: https://doi.org/10.1109/LGRS.2022.3209725. 202112月基础版三区,升级版二区,2021IF 5.343 

[3] Jiya Pan a,b,c , Jinliang Wang a,b,c,*, Fan Gao d ,and Guangjie Liu e.Quantitative estimation and influencing factors of ecosystem soil conservation in Shangri-La, China[J]. Geocarto International, 2022. DOI: https://doi.org/10.1080/10106049.2022.2091160.(202112月基础版二区,升级版三区,2021IF 4.889)

[2] Pan, J. Y.1,2,3 – Wang, J. L.1,2,3* – Liu, G. J.4 – Gao, F.5 Estimation of ecological asset values in Shangri_la based on remotely sensed data [J]. Applied ecology and environmental research, 2022, 20(4):2879-2895. DOI: http://dx.doi.org/10.15666/aeer/2004_28792895 . (SCIE 四区,2020-2021最新IF: 0.711)

 [1]潘继亚, 王金亮, 高帆. 滇西北高山峡谷典型区土地利用变化与生态安全评价研究[J]. 生态科学, 2022, 41(2): 29–40. (北大核心, CSCD 扩展库)

 

附录3 王金亮团队20221月至目前发表论文清单

20221月至今,王金亮教授团队,发表学术论文13篇,其中11 SCI/SCIE 论文、2CSCD 论文,具体信息如下:

[13] Jiya Pan , Cheng Wang, Jinliang Wang *, Fan Gao, Qianwei Liu , Jianpeng Zhang, and Yuncheng Deng. Land Cover Classification Using ICESat-2 Photon Counting Data and Landsat 8 OLI Data: A Case Study in Yunnan Province, China[J]. IEEE Geoscience and Remote Sensing Letters, 2022.

DOI: https://doi.org/10.1109/LGRS.2022.3209725. 202112月基础版三区,升级版二区,2021IF 5.343

[12] Suling He, Jie Li, Jinliang Wang*, and Fang Liu. Evaluation and analysis of upscaling of different Land Use /Land Cover products (FORM-GLC30, GLC_FCS30, CCI_LC, MCD12Q1 and CNLUCC): a case study in China[J]. Geocarto International,2022, Online.

DOI:HTTPS://DOI.ORG/10.1080/10106049.2022.2127926. (2021 12 月基础版二区,升级 版,2021 IF 4.889)

[11]Juncheng Shi, Cheng Wang, Jinliang Wang*, Xiaohuan Xi*, Xuebo Yang, and Xue Ding*. Study on the LAI and FPAR inversion of maize from airborne LiDAR and hyperspectral data[J] INTERNATIONAL JOURNAL OF REMOTE SENSING 2022, VOL. 43, NO. 13, 4793-4809 HTTPS://DOI.ORG/10.1080/01431161.2022.2121187 (中科院 SCI 期刊分区 2021 12 最新基础版三区,升级版三区;2021 IF 3.531

[10] Chen Y, Wang J*, Kurbanov E, Thomas A, Sha J, Jiao Y, et al. Ecological security assessment at different spatial scales in central Yunnan Province, China[J]. PLoS ONE, 2022, 17(6): e0270267.

DOI: https://doi.org/10.1371/journal.pone.0270267. (中科院 SCI 期刊分区:2021 12 月基础版三区,升级版三区;2022 年最新 IF 3.752)

 [9] Jiya Pan, Jinliang Wang*, Fan Gao, and Guangjie Liu. Quantitative estimation and influencing factors of ecosystem soil conservation in Shangri-La, China[J]. Geocarto International, 2022.

DOI: https://doi.org/10.1080/10106049.2022.2091160. (中科院 SCI 期刊分区: 2021 12 月基础版二区,升级版三区;2021 IF 4.889)

[8] Jianpeng Zhang, Jinliang Wang*, Feng Cheng, Weifeng Ma, Qianwei Liu, Guangjie Liu. Natural forest ALS-TLS point cloud data registration without control points[J]. Journal of Forestry Research, 2022, Online.

 DOIhttps://doi.org/10.1007/s11676-022-01499-w.(中科院 SCI 期刊分区:2021 12 月基础版 SCIE 二区,升级版 SCIE 二区;2021 IF 2.149

[7] PAN, J. Y. ,WANG, J. L.* , LIU, G. J. ,GAO, F.Estimation of ecological asset values in Shangri_la based on remotely sensed data [J]. Applied ecology and environmental research, 2022, 20(4):2879-2895.

DOI: http://dx.doi.org/10.15666/aeer/2004_28792895 . (中科院 SCI 期刊分区: 2021 12 月基础版 SCIE 四区,升级版 SCIE 四区;2020-2021 最新 IF: 0.711)

[6]Jie Li, Suling He, Jinliang Wang*, Weifeng Ma, Hui Ye. Investigating the spatiotemporal changes and driving factors of nighttime light patterns in RCEP Countries based on remote sensed satellite images [J]. Journal of Cleaner Production, 2022, 131944.

DOI: https://doi.org/10.1016 /j.jclepro.2022.131944. (中科院 SCI 期刊分区:2021 12 月基础版 SCIE 一区,升级版 SCIE 一区;Top:是;2020-2021 最新 IF: 9.297)

 [5]潘继亚, 王金亮, 高帆. 滇西北高山峡谷典型区土地利用变化与生态安全评价 研究[J]. 生态科学, 2022, 41(2): 29–40. (北大核心, CSCD 扩展库)

[4] Jie Li, Jinliang Wang*, Jun Zhang, Chenli Liu, Suling He, Lanfang Liu. Growing-season vegetation coverage patterns and driving factors in the China-Myanmar Economic Corridor based on Google Earth Engine and geographic detector [J]. Ecological Indicators, 2022, 136, 108620.

 DOI: https://doi.org/10.1016/j.ecolind.2022.108620. (中科院 SCI 期刊分区:2021 12 月基础版 SCIE 二区,升级版 SCIE 二区;2022 最新 IF: 6.263)

[3]农兰萍,王金亮,玉院和.基于地理加权回归模型和不同植被特征参数的 TRMM 3B43 降尺度研究——以云南省为例[J].兰州大学学报(自然科学版), 2022, 58(01): 99-110+117. DOI:10.13885/j.issn.0455-2059.2022.01.011. ( CSCD 核心库)

[2] Jianpeng Zhang, Jinliang Wang*, Pinliang Dong, Weifeng Ma, Yicheng Liu, Qianwei Liu, Zhiyan Zhang. Tree stem extraction from TLS point-cloud data of natural forests based on geometric features and DBSCAN[J]. Geocarto International, Published online: 08 Feb 2022.

DOI: 10.1080/10106049.2022.2034988 (中科院 SCI 期刊分区:2021 12 月基 础版 SCIE 二区,升级版 SCIE 三区;2021 IF 4.889)

[1] Yuanhe Yu, Xingqi Sun, Jinliang Wang*, Jianpeng Zhang. Using InVEST to evaluate water yield services in Shangri-La, Northwestern Yunnan, China[J]. Peer J, 2022, online.

DOI: https://doi.org/10.7717/peerj.12804 (中科院 SCI 期刊分区:2021 12 月基 础版 SCIE 三区,升级版 SCIE 三区;2020-2021 IF: 2.984)

 

(供稿:云南省高校资源与环境遥感重点实验室)