当前位置 : 首页 > 新闻动态

新闻动态

资源与环境遥感团队学术论文在SCIE三区期刊ISPRS International Journal of Geo-Information上线发表

日期:2024-07-19 点击量: 371


资源与环境遥感团队学术论文在SCIE三区期刊ISPRS International Journal of Geo-Information上线发表

202471日,以李杰(云南师范大学地理学部地图学与地理信息系统专业2020级博士研究生)为第一作者,王金亮教授为通讯作者所撰写的题为“Using Knowledge Graphs to Analyze the Characteristics and Trends of Forest Carbon Storage Research at the Global Scale”的学术论文在SCIE期刊ISPRS International Journal of Geo-InformationIJGI)上线发表https://doi.org/10.3390/ijgi13070234)。

image.png

森林碳储量(Forest Carbon StorageFCS)研究对应对全球气候变化至关重要,近年来引起了人们的极大关注。先前对FCS领域的综述形成了其科学基础。然而,现有的知识仍然是有限的、碎片化的,缺乏宏观层面的知识发现。换言之,目前对FCS的综述很难解释以下问题:(1)全球FCS研究的时空格局是什么?(2)如何在国家、机构、学者和期刊层面评估FCS研究的现状?(3FCS研究的主要热点及其演变过程是什么?为了回答这些问题并填补相关知识空白,我们创新性地结合科学计量制图工具和其他统计模型的优势,对1993−2022年间Web of Science核心数据库中的1252FCS论文进行了客观、多角度的文献计量分析,重点揭示了全球FCS研究的宏观时空格局、多维研究实力和主题演变过程。

我们发现,FCS研究越来越受到学术界的关注。具体而言,1993年至2022年,FCS论文产量呈强劲增长趋势,其中欧洲、美洲和亚洲是FCS的主要研究地区。在国家层面,美国是全球FCS研究中最活跃、最具影响力的国家,拥有众多权威研究机构和研究人员,前者如美国林业局,后者如Grant M.DomkeJerome chave等学者。中国的活跃度和影响力仅次于美国,中国科学院是全球最活跃的FCS研究机构。对于研究主题,尽管不同时期的热门关键词存在一些差异,但“生物量”始终是FCS领域最常见的研究主题。其他主题随着技术创新和当代背景变化而不断扩展,主要集中在FCS的估计方法、动态变化、驱动因素和可持续管理等方面。总之,通过本研究,可以协助研究人员更好地了解全球FCS研究现状和趋势,进而为未来的决策和实践提供参考。

image.png

Figure 1. Annual number of forest carbon storage (FCS) papers published and its trends at global scale.

image.png

Figure 2. The spatiotemporal distribution of FCS papers in the past 30 years: (a) the spatial distribution of FCS papers; (b) the top three countries in terms of the percentage of FCS papers published each year to the total global FCS papers for that year. NoP, Per, and TC represent the number of papers, the percentage of published papers in the total papers, and total citations, respectively.

image.png

Figure 3. The collaboration network of (a) countries and (b) institutions that have more than 5 FCS papers. Nodes represent countries and institutions, and larger nodes and thicker lines indicate more partners and more frequent collaborations, respectively.

image.png

Figure 4. The evolution of the keywords in the FCS literature in the (a) initial period (1993–2001), (b) slow growth period (2002–2009), (c) rapid growth period (2010–2022), and (d) whole study period (1993–2022). Nodes represent keywords, and the larger the node is, the higher the occurrence frequency of the keyword.

该论文得到了王金亮教授主持的云南省科技重大专项(西南联合研究生院科技专项基础研究与应用基础研究重大专项,批准号202302AO370003);国家自然科学基金项目(批准号41961060);李杰主持的云南师范大学研究生科研创新基金项目(批准号YJSJJ23-A21)的共同资助。

 

附录 1 论文相关信息

标题:Using Knowledge Graphs to Analyze the Characteristics and Trends of Forest Carbon Storage Research at the Global Scale

作者Jie Li 1,2,3, Jinliang Wang 1,2,3,*, Suling He 1,2,3, Chenli Liu 4, Lanfang Liu 1,2,3

通讯作者Jinliang Wang

作者单位

1.Faculty of Geography, Yunnan Normal University, Kunming 650500, China; lijie2977810@163.com;

2 Key Laboratory of Resources and Environmental Remote Sensing for Universities in Yunnan, Kunming 650500, China;

3 Center for Geospatial Information Engineering and Technology of Yunnan Province, Kunming 650500, China;

4 Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China

 

出版物:ISPRS International Journal of Geo-Information 中科院SCI期刊分区:202312月最新升级版三区,2024IF2.8

摘要:Research on forest carbon storage (FCS) is crucial for the sustainable development of human society given the context of global climate change. Previous FCS studies formed the science base of the FCS field but lacked a macrolevel knowledge summary. This study combined the scientometric mapping tool VOSviewer and multiple statistical models to conduct a comprehensive knowledge graph mining and analysis of global FCS papers (covering 101 countries, 1712 institutions, 5435 authors, and 276 journals) in the Web of Science database as of 2022, focusing on revealing the macro spatiotemporal pattern, multidimensional research status, and topic evolution process of FCS research at the global scale, so as to grasp the status of global FCS research more clearly and comprehensively, thereby facilitating the future decision-making and practice of researchers. The results showed the following: (1) In the past three decades, the number of FCS papers indicated an increasing trend, with a growth rate of 4.66/yr, particularly significant after 2010. These papers were mainly from Europe, the Americas, and Asia, while there was a huge gap between Africa, Oceania, and the above regions. (2) For the research status at the national, institutional, scholar, and journal levels, the USA, with 331 FCS papers and 18,653 total citations, was the most active and influential country in global FCS research; the United States Forest Service topped the influential ranking with 4115 citations; Grant M. Domke and Jerome Chave were the most active and influential FCS researchers globally, respectively. China’s activity (237 papers) and influence (5403 citations) ranked second, and the Chinese Academy of Sciences was the most active research institution in the world. Currently, FCS research is published in a growing number of journals, among which Forest Ecology and Management ranked first in the number of papers (154 papers) and citations (6374 citations). (3) In recent years, the keyword frequency of monitoring methods, driving factors, and reasonable management for FCS has increased rapidly, and many new related keywords have emerged, which means that researchers are not only focusing on the estimation and monitoring of FCS but also increasingly concerned about its driving mechanism and sustainable development.

关键词:forest carbon storage; forest biomass; bibliometric analysis; knowledge graph

 

附录 2 李杰同学发表论文清单

20209月攻读博士至今,李杰在王金亮教授指导下共发表了5SCIE学术论文,信息如下:

[5] Jie Li, Jinliang Wang*, Suling He, Chenli Liu, Lanfang Liu. Using Knowledge Graphs to Analyze the Characteristics and Trends of Forest Carbon Storage Research at the Global Scale [J]. ISPRS International Journal of Geo-Information, 2024, 13(7), 234. DOI: https://doi.org/10.3390/ijgi13070234. (中科院SCI期刊分区:202312月最新升级版三区,2024IF2.8)

[4] Jie Li, Hui Wang, Jinliang Wang*, Jianpeng Zhang, Yongcui Lan, Yuncheng Deng. Combining Multi-Source Data and Feature Optimization for Plastic-Covered Greenhouse Extraction and Mapping Using the Google Earth Engine: A Case in Central Yunnan Province, China [J]. Remote Sensing, 2023, 15, 3287. DOI: https:// doi.org/10.3390/rs15133287. (中科院SCI期刊分区:202312月最新升级版二区,2024IF4.2)

[3] Jie Li, Suling He, Jinliang Wang*, Weifeng Ma, Hui Ye. Investigating the spatiotemporal changes and driving factors of nighttime light patterns in RCEP Countries based on remote sensed satellite images [J]. Journal of Cleaner Production, 2022, 359, 131944. DOI: https://doi.org/10.1016/j.jclepro.2022.131944. (中科院SCI期刊分区:202312月最新升级版一区Top2024IF9.7)

[2] Jie Li, Jinliang Wang*, Jun Zhang, Chenli Liu, Suling He, Lanfang Liu. Growing-season vegetation coverage patterns and driving factors in the China-Myanmar Economic Corridor based on Google Earth Engine and geographic detector [J]. Ecological Indicators, 2022, 136, 108620. DOI: https://doi.org/10.1016/j.ecolind.2022.108620. (中科院SCI期刊分区:202312月最新升级版二区Top2024IF7.0)

[1] Jie Li, Jinliang Wang*, Jun Zhang, Jianpeng Zhang, Han Kong. Dynamic changes of vegetation coverage in China-Myanmar economic corridor over the past 20 years [J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 102, 102378. DOI: https://doi.org/10.1016/j.jag.2021.102378. (中科院SCI期刊分区:202312月最新升级版一区Top2024IF7.6)

 

附录 3王金亮教授团队 2024 年发表论文清单

20240101日至07016日,王金亮教授导师团队发表学术论文9篇(仅统计王金亮教授为通讯作者的论文),其中SCIE论文8篇、SSCI论文1篇。具体信息如下:

[9] Liu, S.; Deng, Y.; Zhang, J.; Wang, J.*; Duan, D. Extraction of Arbors from Terrestrial Laser Scanning Data Based on Trunk Axis Fitting[J]. Forests 2024, 15, 1217. https:// doi.org/10.3390/f15071217(中科院 SCI 期刊分区:2023 12 月最新分区二区,IF2.4)

[8] Jie Li, Jinliang Wang*, Suling He, Chenli Liu, Lanfang Liu. Using Knowledge Graphs to Analyze the Characteristics and Trends of Forest Carbon Storage Research at the Global Scale [J]. ISPRS International Journal of Geo-Information, 2024, 13(7), 234. DOI: https://doi.org/10.3390/ijgi13070234. (中科院SCI期刊分区:202312月最新升级版三区,2024IF2.8)

[7] Suling He, Jinliang Wang*, Jie Li, Jinming Sha, Jinzhun Zhou, Yuanmei Jiao, Quantification and Simulation of the Ecosystem Service Value of Karst Region in Southwest China[J], Land, 2024, 13(6): 812. https://doi.org/10.3390/land13060812. (中科院 SCI 期刊分区:202312月最新升级版SSCI二区,2024IF3.9)

[6] Lanfang Liu, Yan Liu, Feng Cheng, Yuanhe Yu, Jinliang Wang*, Cheng Wang , Lanping Nong, Huan Deng, Remote sensing estimation of regional PM2.5 Based on GTWR Model -A case study of southwest China[J], Environmental Pollution, 2024, 124057. https://doi.org/10.1016/j.envpol.2024.124057 (中科院SCI期刊分区:202312月最新升级版二区Top期刊,2024IF8.9)

[5] Rafael Antonio Chaparro Torres, Jinliang Wang, Jianpeng Zhang, Lanfang Liu, Yongcui Lan, Temporal analysis of land degradation and urban expansion in central Yunnan Province using remote sensing for supporting sustainable development goals 11/15[J], Ecological Indicators, Volume 163, 2024, 112058.  https://doi.org/10.1016/j.ecolind.2024.112058 (中科院SCI期刊分区:202312月最新升级版二区Top期刊,2024IF6.9)

[4] Gao, Y., Wang, J. *, Liu, S. *, Yao, X., Qi, M., Liang, P., Xie, F., Mu, J., Ma, X. Monitoring dynamics of Kyagar Glacier surge and repeated draining of Ice-dammed lake using multi-source remote sensing[J]. Science of The Total Environment, 2024, 172467. https://doi.org/10.1016/j.scitotenv.2024.172467 (中科院SCI期刊分区:202312月最新升级版一区Top期刊,2024IF9.8)

[3] Xu, Haichao, Rongqing Han, Jinliang Wang*, and Yongcui Lan. Temporal–Spatial Characteristics and Influencing Factors of Forest Fires in the Tropic of Cancer (Yunnan Section) [J]. Forests, 2024, 15, 661. https://doi.org/10.3390/f15040661 (中科院SCI期刊分区:202312月最新升级版二区,2024IF2.9)

[2] Yanke Zhang, Tengfei Gu, Suling He, Feng Cheng, Jinliang Wang*, et al. Extreme drought along the tropic of cancer (Yunnan section) and its impact on vegetation[J]. Scientific reports, 2024, 14, 7508. https://doi.org/10.1038/s41598-024-58068-w. (中科院SCI期刊分区:202312月最新升级版二区,2024IF4.6)

[1] Di Duan, Yuncheng Deng, Jianpeng Zhang, Jinliang Wang*, et al. Influence of VF and SOR-Filtering Methods on Tree Height Inversion Using Unmanned Aerial Vehicle LiDAR Data[J]. Drones, 2024, 8(4), 119. https://doi.org/10.3390/drones8040119. (中科院SCI期刊分区:202312月最新升级版二区,2024IF4.8)

 

(云南省高校资源与环境遥感重点实验室  供稿)